Computational fluid design


  • Comprehensive parametric studies of the target application
  • No consumption of materials, no expensive trial-and-error cycles
  • Detailed analyses of the simulation results
  • Derivation of guidelines for process optimization
  • Meaningful 3D visualization for a better understanding of the system


Vorrichtung und Verfahren zum Bestimmen einer Wandschubspannung und System zur Erkennung von Arteriosklerose (DE 10 2014 222 804 A1).


  • Breinlinger, T.; Polfer, P.; Hashibon, S.; Kraft T.
    Surface Tension and Wetting Effects with Smoothed Particle Hydrodynamics.
    Journal of Computational Physics. 2013;243:14–27
  • Khamassi, J.; Bierwisch, C.; Pelz P.
    Geometry optimization of branchings in vascular networks.
    Physical Review E. 2016;93(6):062408.
  • Lagger, H.G.; Breinlinger, T.; Korvink, J.G.; Moseler, M.; Di Renzo, S.; Di Maio, F.; Bierwisch, C.
    Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids.
    Journal of Non-Newtonian Fluid Mechanics. 2015;218:16–26.
  • Lagger, H.G.; Bierwisch, C.; Korvink, J.G.; Moseler, M.
    Discrete element study of viscous flow in magnetorheological fluids.
    Rheologica Acta. 2014;53(5–6):417–443.
  • Polfer, P.; Kraft, T.; Bierwisch C.
    Suspension modeling using smoothed particle hydrodynamics: Accuracy of the viscosity formulation and the suspended body dynamics.
    Applied Mathematical Modelling. 2016;40(4):2606–2618.


  • BioRap – Herstellung bio-inspirierter Versorgungssysteme für Transplantate mittels Rapid Prototyping über Inkjet-Druck und Multiphotonenpolymerisation (funded by Fraunhofer Gesellschaft, 2008 - 2011)
  • ArtiVasc 3D – Artificial vascularised scaffolds for 3D-tissue regeneration (funded by the EU, 2011 - 2015)