Biobased bioinks


  • Development of biobased inks
  • Chemical modification of biopolymers
  • Adaption of ink properties to printing processes: low viscous fluids and hydrogel-based inks
  • Formulation of inks with tailored crosslinking chemistry (e.g. radical, click-chemistry, photo-induced, redox-induced)
  • Formulation of inks with tailored crosslinking capacity
  • Rheological ink characterization
  • Dynamic mechanical analysis of hydrogels
  • Cytocompatibility testing (EN ISO 10993)
  • Development of cell laden inks
  • Development of tissue specific inks (e.g. cartilage, bone, fatty tissue, angiogenesis-stimulating ink for endothelial cells)


  • »Modifizierte Gelatine, Verfahren zu ihrer Herstellung und Verwendung« (DE 10 2012 219 691 B4)
  • »Vorrichtung und Verfahren zur schichtweise Herstellung von 3D Strukturen sowie deren Verwendung« – Device and method fort he production of 3D structures in layers and use thereof (EP 2 621 713 B1)


  • Borchers, K.; Schönhaar, V.; Hirth, T.; Tovar, G.; Weber, A.
    Ink Formulation for Inkjet Printing of Streptavidin and Streptavidin Functionalized Nanoparticles.
    Journal of Dispersion Science and Technology 2011;32:1759-64.
  • Engelhardt*, S.; Hoch*, E.; Borchers, K.; Meyer, W.; Krüger, H.; Tovar, G.; Gillner, A. (* contributed equally)
    Fabrication of 2D protein microstructures and 3D polymer–protein hybrid microstructures by two-photon polymerization.
    Biofabrication 3/2 (2011) 25-33.
  • Engelhardt, S.; Hu, Y.; Seiler, N.; Riester, D.; Meyer, W.; Krüger, H.; Wehner, M.; Bremus-Koebberling, E.; Gillner, A.
    3D-Microfabrication of Polymer-Protein Hybrid Structures with a Q-Switched Microlaser.
    Journal of Laser Micro/Nanoengineering 6/1 (2011) 54-58.
    doi: 10.2961/jlmn.2011.01.0012.
  • Engelhardt, S.; Meyer, W.; Krüger, H.; Wenz, A.; Schönhaar, V. et al.
    Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization.
    Journal of Functional Biomaterials 2016;7:11.
  • Hoch, E.; Schuh, C.; Hirth, T.; Tovar, G.; Borchers, K.
    Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation.
  • Hoch, E.; Hirth, T.; Tovar, G.; Borchers, K.
    Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. Journal of Materials Chemistry B 2013;1:5675-85.
  • Hoch, E.; Tovar, G.; Borchers, K.
    Biopolymer-based hydrogels for cartilage tissue engineering. Bioinspired, Biomimetic and Nanobiomaterials 2016;5:51-66.
  • Huber, B.; Borchers, K.; Tovar, G.; Kluger, P.
    Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering. Journal of Biomaterials Applications 2016;30:699-710. Journal of Materials Science: Materials in Medicine 11 (2012) 2607-2617.
  • Meyer, W.; Engelhardt, S.; Novosel, E.; Elling, B.; Wegener, M.; Krüger, H.
    Soft Polymers for Building up Small and Smallest Blood Supplying Systems by Stereolithography.
    J. Funct. Biomater. 3 (2012) 257-268.
  • Wenz, A.; Janke, K.; Hoch, E.; Tovar, G.; Borchers, K.; Kluger, P.
    Hydroxyapatite-modified gelatin bioinks for bone bioprinting.
    BioNanoMaterials2016. p. 179.


ArtiVasc 3D

Bioprinting (German)


  • »Microprint – Drucktechnik für innovative funktionale Oberflächen« (funded by BMBF, 2007 - 2010)
  • »BioRap – Herstellung bio-inspirierter Versorgungssysteme für Transplantate mittels Rapid Prototyping über Inkjet-Druck und Multiphotonenpolymerisation« (funded by Fraunhofer Gesellschaft, 2008 - 2011)
  • »ArtiVasc 3D – Artificial vascularised scaffolds for 3D-tissue regeneration« (funded by the EU, 2011 - 2015)
  • »Aufbau von Knorpelgewebe mit biomimetischer Zonenestruktur« (funded by Peter und Traudel Engelhorn Stiftung zur Förderung der Biotechnologie und Gentechnik 2014 - 2015)