Computational fluid design

Progress has been made in developing manufacturing technologies which enable the fabrication of artificial vascular networks for tissue cultivation. However, those networks are often rudimentary designed with respect to their geometry. This restricts long-term biological functionality of vascular cells which depends on geometry-related fluid mechanical stimuli and the avoidance of vessel occlusion.

Computational fluid dynamics simulations enable bio-inspired geometry optimization for bifurcations in artificial vascular networks. The simulation results enable the derivation of design rules for geometrical parameters such as the branching angle. Those design rules are not only beneficial for tissue engineering applications. Moreover, they can be used as indicators for diagnoses of vascular diseases.


  • Comprehensive parametric studies of the target application
  • No consumption of materials, no expensive trial-and-error cycles
  • Detailed analyses of the simulation results
  • Derivation of guidelines for process optimization
  • Meaningful 3D visualization for a better understanding of the system


Vorrichtung und Verfahren zum Bestimmen einer Wandschubspannung und System zur Erkennung von Arteriosklerose (DE 10 2014 222 804 A1).


  • BioRap – Herstellung bio-inspirierter Versorgungssysteme für Transplantate mittels Rapid Prototyping über Inkjet-Druck und Multiphotonenpolymerisation (funded by Fraunhofer Gesellschaft, 2008 - 2011)
  • ArtiVasc 3D – Artificial vascularised scaffolds for 3D-tissue regeneration (funded by the EU, 2011 - 2015)


  • Polfer, P.; Kraft, T.; Bierwisch C.
    Suspension modeling using smoothed particle hydrodynamics: Accuracy of the viscosity formulation and the suspended body dynamics.
    Applied Mathematical Modelling. 2016;40(4):2606–2618.
  • Khamassi, J.; Bierwisch, C.; Pelz P.
    Geometry optimization of branchings in vascular networks.
    Physical Review E. 2016;93(6):062408.
  • Lagger, H.G.; Breinlinger, T.; Korvink, J.G.; Moseler, M.; Di Renzo, S.; Di Maio, F.; Bierwisch, C.
    Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids.
    Journal of Non-Newtonian Fluid Mechanics. 2015;218:16–26.
  • Lagger, H.G.; Bierwisch, C.; Korvink, J.G.; Moseler, M.
    Discrete element study of viscous flow in magnetorheological fluids.
    Rheologica Acta. 2014;53(5–6):417–443.
  • Breinlinger, T.; Polfer, P.; Hashibon, S.; Kraft T.
    Surface Tension and Wetting Effects with Smoothed Particle Hydrodynamics.
    Journal of Computational Physics. 2013;243:14–27