Biobased bioinks

Biomolecules are highly attractive materials which are produced and optimized by nature. They can meet complex challenges such as storage and release of water, biological signalling and even the formation of a biofunctional matrix to host living cells. We can modify biomolecules and use them in material design for bioprinting. We use the biopolymers from the native extracellular matrix in order to provide printable formulations of tissue specific matrices for printing and encapsulation of cells.

Examples for photo-crosslinkable biomolecules: methacryl-modified gelatin derivatives, methacryl- and acetyl-modified gelatin derivatives for non-gelling, low viscous solutions,  methacrylated hyaluronic acid or chondroitin sulfate, methacryl-modified or benzophenone-modified heparin.

Services

  • Development of biobased inks
  • Chemical modification of biopolymers
  • Adaption of ink properties to printing processes: low viscous fluids and hydrogel-based inks
  • Formulation of inks with tailored crosslinking chemistry (e.g. radical, click-chemistry, photo-induced, redox-induced)
  • Formulation of inks with tailored crosslinking capacity
  • Rheological ink characterization
  • Dynamic mechanical analysis of hydrogels
  • Cytocompatibility testing (EN ISO 10993)
  • Development of cell laden inks
  • Development of tissue specific inks (e.g. cartilage, bone, fatty tissue, angiogenesis-stimulating ink for endothelial cells)

Patents

  • »Modifizierte Gelatine, Verfahren zu ihrer Herstellung und Verwendung« (DE 10 2012 219 691 B4)
  • »Vorrichtung und Verfahren zur schichtweise Herstellung von 3D Strukturen sowie deren Verwendung« – Device and method fort he production of 3D structures in layers and use thereof (EP 2 621 713 B1)

Publications

  • Borchers, K.; Schönhaar, V.; Hirth, T.; Tovar, G.; Weber, A.
    Ink Formulation for Inkjet Printing of Streptavidin and Streptavidin Functionalized Nanoparticles.
    Journal of Dispersion Science and Technology 2011;32:1759-64.
  • Engelhardt*, S.; Hoch*, E.; Borchers, K.; Meyer, W.; Krüger, H.; Tovar, G.; Gillner, A. (* contributed equally)
    Fabrication of 2D protein microstructures and 3D polymer–protein hybrid microstructures by two-photon polymerization.
    Biofabrication 3/2 (2011) 25-33.
  • Engelhardt, S.; Hu, Y.; Seiler, N.; Riester, D.; Meyer, W.; Krüger, H.; Wehner, M.; Bremus-Koebberling, E.; Gillner, A.
    3D-Microfabrication of Polymer-Protein Hybrid Structures with a Q-Switched Microlaser.
    Journal of Laser Micro/Nanoengineering 6/1 (2011) 54-58.
    doi: 10.2961/jlmn.2011.01.0012.
  • Engelhardt, S.; Meyer, W.; Krüger, H.; Wenz, A.; Schönhaar, V. et al.
    Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization.
    Journal of Functional Biomaterials 2016;7:11.
  • Hoch, E.; Schuh, C.; Hirth, T.; Tovar, G.; Borchers, K.
    Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation.
  • Hoch, E.; Hirth, T.; Tovar, G.; Borchers, K.
    Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. Journal of Materials Chemistry B 2013;1:5675-85.
  • Hoch, E.; Tovar, G.; Borchers, K.
    Biopolymer-based hydrogels for cartilage tissue engineering. Bioinspired, Biomimetic and Nanobiomaterials 2016;5:51-66.
  • Huber, B.; Borchers, K.; Tovar, G.; Kluger, P.
    Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering. Journal of Biomaterials Applications 2016;30:699-710. Journal of Materials Science: Materials in Medicine 11 (2012) 2607-2617.
  • Meyer, W.; Engelhardt, S.; Novosel, E.; Elling, B.; Wegener, M.; Krüger, H.
    Soft Polymers for Building up Small and Smallest Blood Supplying Systems by Stereolithography.
    J. Funct. Biomater. 3 (2012) 257-268.
  • Wenz, A.; Janke, K.; Hoch, E.; Tovar, G.; Borchers, K.; Kluger, P.
    Hydroxyapatite-modified gelatin bioinks for bone bioprinting.
    BioNanoMaterials2016. p. 179.

Press/Media

ArtiVasc 3D

Bioprinting (German)

Projects

  • »Microprint – Drucktechnik für innovative funktionale Oberflächen« (funded by BMBF, 2007 - 2010)
  • »BioRap – Herstellung bio-inspirierter Versorgungssysteme für Transplantate mittels Rapid Prototyping über Inkjet-Druck und Multiphotonenpolymerisation« (funded by Fraunhofer Gesellschaft, 2008 - 2011)
  • »ArtiVasc 3D – Artificial vascularised scaffolds for 3D-tissue regeneration« (funded by the EU, 2011 - 2015)
  • »Aufbau von Knorpelgewebe mit biomimetischer Zonenestruktur« (funded by Peter und Traudel Engelhorn Stiftung zur Förderung der Biotechnologie und Gentechnik 2014 - 2015)